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Receiver operator characteristic (ROC) analysis
1
 is sometimes used to 

assess the classification accuracy achieved using an ordered attribute 

to discriminate a dichotomous class variable, and in this context to 

identify an “optimal” discriminant cutpoint. In ROC analysis the 

optimal cutpoint corresponds to the threshold value at which distance 

from the ROC curve to the point representing perfect classification 

accuracy is minimized. This note discusses the difference between an 

ROC-defined optimal discriminant threshold, and the optimal cutpoint 

identified by UniODA that maximizes ESS for the sample.
2
 ROC and 

UniODA methods are illustrated and compared for an application 

involving prediction of Cesarean delivery. 

 

 

The ROC curve is a plot that displays 

sensitivity (“true positive rate”) on the ordinate, 

and 1-specificity (“false positive rate”) on the 

abscissa, for all possible threshold values (cut-

points) that separate class 0 and class 1 observa-

tions in the sample. The total area under the 

ROC curve (AUC) is used as an index of the 

classification performance (predictive validity) 

of scores on the attribute. The greater the AUC 

value, the greater the ability of scores on the 

attribute to correctly classify the two class 

categories for the sample: the AUC is sample-

specific—that is, it isn’t normed against chance. 

In ROC analysis the distance d between the 

point representing perfect classification and any 

point on the ROC curve is: d=√[(1-sn)
2
+(1-sp)

2
], 

where sn=sensitivity and sp=specificity. The 

optimal cutpoint for discriminating the class 

categories in ROC analysis is defined as the 

threshold value associated with the minimum 

value of d. In contrast, in UniODA the optimal 

threshold is defined as the cutpoint maximizing 

the value (sn+sp)/2, that yields the maximum 

possible ESS for the sample: ESS=0 indicates 

accuracy expected by chance, and ESS=100 

indicates perfect discrimination.
2
 Because √[(1-

sn)
2
+(1-sp)

2
] and (sn+sp)/2 aren’t isomorphic, 

ROC analysis and UniODA mustn’t identify 

identical optimal discriminant threshold values 

for a given sample. 

These competing methods are illustrated 

for an application predicting Cesarean delivery 

(the dichotomous class variable) on the basis of 

duration of membrane rupture (in hours) for a 

sample of n=166 hospitalized women.
3
 For this 

sample Table 1 presents every possible cutpoint 

value (ranging from 0 to 21.5), as well as the 

corresponding values of sensitivity, 1-specific-

ity, specificity, ROC distance measure d, and 

the UniODA performance measure ESS.
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    Table 1: Computing the “Optimal” Cut-Point Value by ROC Analysis versus by UniODA 

Optimal  

 Value      Point   Cutpoint  Sensitivity  1-Specificity  Specificity   Distance      ESS 

 

            1     0.00    1.000    1.0000     0.0000   1.00000        0 

            2     0.63    1.000    0.9760     0.0240   0.97600     2.40 

            3     0.88    1.000    0.9690     0.0310   0.96900     3.10 

            4     1.25    1.000    0.8900     0.1100   0.89000    11.00 

            5     1.75    1.000    0.8660     0.1340   0.86600    13.40 

            6     2.13    1.000    0.8190     0.1810   0.81900    18.10 

            7     2.38    1.000    0.8110     0.1890   0.81100    18.90 

            8     2.75    1.000    0.7800     0.2200   0.78000    22.00 

            9     3.25    1.000    0.7170     0.2830   0.71700    28.30 

           10     3.75    1.000    0.7090     0.2910   0.70900    29.10 

           11     4.50    1.000    0.6460     0.3540   0.64600    35.40 

           12     5.13    0.971    0.5830     0.4170   0.58372    38.80 

           13     5.38    0.971    0.5750     0.4250   0.57573    39.60 

           14     5.75    0.971    0.5510     0.4490   0.55176    42.00 

           15     6.25    0.914    0.3780     0.6220   0.38766    53.60 

           16     6.75    0.914    0.3460     0.6540   0.35653    56.80 

           17     7.13    0.857    0.2910     0.7090   0.32424    56.60 

           18     7.38    0.857    0.2830     0.7170   0.31708    57.40 

           19     7.75    0.857    0.2760     0.7240   0.31085    58.10 

           20     8.25    0.800    0.1892     0.8108   0.27531    61.08 

  ROC      21     8.75    0.800    0.1810     0.8190   0.26974    61.90 

           22     9.25    0.743    0.1100     0.8900   0.27955    63.30 

  ODA      23     9.75    0.743    0.1020     0.8980   0.27650    64.10 

           24    10.25    0.543    0.0390     0.9610   0.45866    50.40 

           25    10.75    0.543    0.0310     0.9690   0.45805    51.20 

           26    11.50    0.457    0.0240     0.9760   0.54353    43.30 

           27    12.50    0.400    0.0080     0.9920   0.60005    39.20 

           28    13.50    0.343    0.0000     1.0000   0.65700    34.30 

           29    14.50    0.286    0.0000     1.0000   0.71400    28.60 

           30    15.50    0.257    0.0000     1.0000   0.74300    25.70 

           31    16.50    0.200    0.0000     1.0000   0.80000    20.00 

           32    17.50    0.171    0.0000     1.0000   0.82900    17.10 

           33    18.50    0.143    0.0000     1.0000   0.85700    14.30 

           34    19.50    0.114    0.0000     1.0000   0.88600    11.40 

           35    20.25    0.057    0.0000     1.0000   0.94300     5.70 

           36    21.50    0.000    0.0000     1.0000   1.00000        0 

 

As seen, the minimum distance d is 0.27 

(shown in red), corresponding to an optimal 

cutpoint of 8.75 for ROC analysis. The optimal 

ESS value is 64.1 (shown in green), corre-

sponding to an optimal cutpoint of 9.75 for 

UniODA. ESS is 61.9 for the ROC cutpoint, 

yielding 3.4% lower classification performance 

than was obtained using UniODA. These results 

clearly demonstrate that ESS achieved using this 

ROC analysis approach is not explicitly optimal. 

Understanding the extent to which maximum 

ESS is underachieved in the literature requires 

additional research examining many different 

applications. However, unless the UniODA 

approach is employed in any given application, 

it is clear that the magnitude of suboptimality 

will remain unknown. 
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It should be noted that differential costs 

of both types of misclassifications are important 

in some applications—such as the diagnosis of 

disease, for example. Indeed, the same point 

may also be raised regarding the differential 

effect of both types of correct classifications. 

UniODA provides the most powerful 

methodology for including these additional 

types of considerations.
2
 

In the maximum-accuracy paradigm 

every application and hypothesis (not only ROC 

analysis) can be weighted using any quantitative 

index (e.g., desirability, valence, threat, fear, 

cost, return, price, distance, time, mass, etc.). 

Differential weights may be assigned to 

differential class categories: for example, class 0 

(negative) observations can be weighted using 

increasingly large weights (e.g., successive 

integers) until the desired level of specificity is 

attained. The same procedure may be used to 

over-weight class 1 (positive) observations and 

thereby maximize sensitivity. And, of course, a 

series of numerical weights for each observation 

can be multiplied, in order to model the overall 

interactive effect of the profile of weights. 

If an application involves multiple 

weights for multiple aspects of the decision-

making outcomes, then depending on the 

application a MCDM approach conducted 

separately by individual, or for a group, might 

(i.e., possibly could meaningfully) be used to 

define a gestalt weight, or solutions involving 

separate weighting strategies can be developed 

and compared in the context of the application. 

Weights can be obtained for and 

assigned to the class categories (UniODA 

software can analyze problems involving up to 

ten separate class categories). Alternatively, 

weights can be applied individually to each 

subject in the study—since not all people have 

the same weighting priorities. 

A tremendous unique advantage of 

maximum-accuracy methods is that (weighted) 

classification accuracy is summarized using 

the normed ESS index on which 0 is the 

(weighted) accuracy expected by chance, and 

100 is perfect (weighted) classification 

accuracy. In this manner solutions can be 

meaningfully compared between different 

applications, by removing the accuracy expected 

simply by chance from the solutions. It is 

important to understand that unlike the normed 

ESS statistic, the maximum overall accuracy 

solution, (True Positives + True Negatives)/N, 

is not normed against chance.
2
 

Probably the most important unique 

advantage, however, is that unlike all other 

methods, only novometric maximum-accuracy 

methods can identify the entire descendant 

family of possible strata (cutpoints) for an 

application, rather than being limited to one 

cutpoint.
4
 This is important in applications 

where there are multiple groups of people who 

have different weighting strategies. Combining 

disparate groups and developing only one 

stratification criterion can result in paradoxical 

confounding: in the worst cases of confounding 

the combined solution can represent a very poor 

solution for all of the different sample strata.
5
 

Therefore, use of optimal methods ensures the 

discovery of models that yield maximum 

(weighted) accuracy for every hypothesis and 

sample, and the identification of valid models 

yielding more reproducible findings than 

models obtained using alternative methods.
6
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